4,788 research outputs found

    Searching edges in the overlap of two plane graphs

    Full text link
    Consider a pair of plane straight-line graphs, whose edges are colored red and blue, respectively, and let n be the total complexity of both graphs. We present a O(n log n)-time O(n)-space technique to preprocess such pair of graphs, that enables efficient searches among the red-blue intersections along edges of one of the graphs. Our technique has a number of applications to geometric problems. This includes: (1) a solution to the batched red-blue search problem [Dehne et al. 2006] in O(n log n) queries to the oracle; (2) an algorithm to compute the maximum vertical distance between a pair of 3D polyhedral terrains one of which is convex in O(n log n) time, where n is the total complexity of both terrains; (3) an algorithm to construct the Hausdorff Voronoi diagram of a family of point clusters in the plane in O((n+m) log^3 n) time and O(n+m) space, where n is the total number of points in all clusters and m is the number of crossings between all clusters; (4) an algorithm to construct the farthest-color Voronoi diagram of the corners of n axis-aligned rectangles in O(n log^2 n) time; (5) an algorithm to solve the stabbing circle problem for n parallel line segments in the plane in optimal O(n log n) time. All these results are new or improve on the best known algorithms.Comment: 22 pages, 6 figure

    Seasonal predictability of the 2010 Russian heat wave

    Get PDF
    The atmospheric blocking over eastern Europe and western Russia that prevailed during July and August of 2010 led to the development of a devastating Russian heat wave. Therefore the question of whether the event was predictable or not is highly important. The principal aim of this study is to examine the predictability of this high-impact atmospheric event on a seasonal timescale. To this end, a set of dynamical seasonal simulations have been carried out using an atmospheric global circulation model (AGCM). The impact of various model initializations on the predictability of this large-scale event and its sensitivity to the initial conditions has been also investigated. The ensemble seasonal simulations are based on a modified version of the lagged-average forecast method using different lead-time initializations of the model. The results indicated that only a few individual members reproduced the main features of the blocking system 3 months ahead. Most members missed the phase space and the propagation of the system, setting limitations in the predictability of the event

    Negative Giant Longitudinal Magnetoresistance in NiMnSb/InSb: An interface effect

    Full text link
    We report on the electrical and magneto-transport properties of the contact formed between polycrystalline NiMnSb thin films grown using pulsed laser deposition (PLD) and n-type degenerate InSb (100) substrates. A negative giant magnetoresistance (GMR) effect is observed when the external magnetic field is parallel to the surface of the film and to the current direction. We attribute the observed phenomenon to magnetic precipitates formed during the magnetic film deposition and confined to a narrow layer at the interface. The effect of these precipitates on the magnetoresistance depends on the thermal processing of the system.Comment: 14 pages, 4 figure

    Cytogenetic behavior of cryoprotectant DMSO

    Get PDF
    IVF (in vitro fertilization) is now used worldwide to overcome female or male infertility. Cryopreservation of human embryos provides the clearest opportunity to improve the clinical results obtained with IVF. Cryoprotective agents (CPA) are used to minimize freezing injuries. DMSO has been the most widely used CPA, however, high concentrations of CPAs in the vitrification solution have been shown to be detrimental to the cell. In order to determine the effect of DMSO solutions (5%, 10% and 20%) on genetic stability and/or subsequent DNA repair, we have investigated its ability to induce Sister Chromatid Exchanges (SCEs) and Proliferation Rate Index (PRI) in normal human lymphocyte cultures of peripheral blood, due to the fact that the study cannot be conducted on embryos and to the limited number of spare available embryos, the corresponding accessible experimental material was T lymphocyte. The blood samples were taken from three different healthy donors (conducting experimental procedure in triplicate). After the effect of DMSO solutions on blood according to the instructions of kit K-SIBV-500, lymphocytes are harvested and cultured with suitable technique to assess SCEs and PRI. The results show that all three DMSO concentrations cause a statistically dose depended significant increase of SCE frequency of the lymphocytes (p<0.001) and raise the need for more research regarding the safe and effective use of cryoprotectant

    Superconductivity and spin-glass like behavior in system with Pd sheet sandwiched between graphene sheets

    Full text link
    Pd-metal graphite (Pd-MG) has a layered structure, where each Pd sheet is sandwiched between adjacent graphene sheets. DC magnetization and AC magnetic susceptibility of Pd-MG have been measured using a SQUID magnetometer. Pd-MG undergoes a superconducting transition at TcT_{c} (=3.63±0.04= 3.63 \pm 0.04 K). The superconductivity occurs in Pd sheets. The relaxation of MZFCM_{ZFC} (aging), which is common to spin glass systems, is also observed below TcT_{c}. The relaxation rate S(t)S(t) shows a peak at a characteristic time tcrt_{cr}, which is longer than a wait time twt_{w}. The irreversibility between χZFC\chi_{ZFC} and χFC\chi_{FC} occurs well above TcT_{c}. The susceptibility χFC\chi_{FC} obeys a Curie-Weiss behavior with a negative Curie-Weiss temperature (13.1Θ5.4-13.1 \leq \Theta \leq -5.4 K). The growth of antiferromagnetic order is limited by the disordered nature of nanographites, forming spin glass-like behavior at low temperatures in graphene sheets.Comment: 21 pages, 15 figures; submitted to J. Phys.: Condensed Matte

    Illumination diagnosis for retrieval of reflections from ambient-noise seismic data in the Siilinjärvi mining site, Finland

    Get PDF
    Reflection seismic methods are becoming popular in mineral exploration, because they allow high-resolution delineation of the exploration targets, even at great depths. Seismic interferometry can be used to retrieve reflections from passive seismic data, removing the need for active seismic sources and, therefore, reducing the cost and environmental impact of exploration. The retrieval of reflections can be challenging, since passive seismic records are typically dominated by surface waves. Therefore, illumination diagnosis, a method which allows the isolation of the portions of the passive data where body-wave signals are stronger, can be a valuable step that improves the quality of the reflections retrieved from seismic interferometry and reduces the overall computational cost of the processing stage. Here, we validate the performance of the method to effectively isolate the portions of the passive data dominated by body waves and apply it on an ambient-noise seismic dataset acquired in the Siilinjärvi mining site in Finland
    corecore